Hecura: Streaming B-trees for
File Systems and Databases

Michael A. Bender Martin Farach-Colton
Stony Brook Rutgers

Problem

Traditiona\ B-tree opevations (update, vange query, search) are Slow.
- inserts [deletes [searches are 0.02.7. to 0.057. of disk bandwiotth.

Lmproving this Performance is an agorithmic problem.

Problem

Traditiona\ B-tree opevations (update, range query, searh) are Slow.
- inserts [deletes [searches are 0.02.7. to 0.057. of disk bandwiotth.

Lmproving this performance is an algorithmic probler.
(We believe 2 betfer algoritm can replace 1o -loo olisks.)

This vesearch : Build probotype streaming B-trees [eender. Farooh-Cottom usumut o)
for indexing high bandwidh data.
“olgta ingest problem

Conventional wisdom: searches more common than inserts.
Often holds, but in many critical cases it doesn't..

Traditional B-ree [Bayer, Mctreight 2] Comcv =m]

b —

—f—

—E A

.."ITT i

1%

—

@

Qs

Traditional B-ree [ayer, Mctreight 32][Comer 4]

. ._ NS
—8 — = logg N o oo G 3
AT] -

Designeol for Disk Access Model (DAM) [Aggama\, Vitter 8]

—B—

=

Cache Disk

. block size B, memory Size M
* count number of block transfers

—ol= —

= B-tree opevatins teke 0(loggN) memory ransfors.

B-tree llpdates are_Slow

b —

Ay

Y

I—B—-l

@

. °(|°~9B N) memory transfers is provably ophmal for searches, '

but We can do beltey for ingevts.

Streaming B-tvee - Tradeaff between seavch and insert.
small sacrifice in search gwes great advamtage in ingert.

B-Tree Updates are_Slow B ;[% o

+ 0(logg N) memary transfors is provably optimal for Seavches,
but We can do better for ngerts.

Streaming B-tvee - Tradeaff between seavch and insert.
small sacrifice in search gwes great advantage in ingert.

Search Tngert
B-tvee logg N logyN

Siveaning B-ivees 2 logg (= lag -N) 2loggn /VE

: " 2
Siveaming 8- Hfees 3 log,N = h’s‘hﬂ) 3 log.N/ g i

: [Butheboum, Goldhwasser,
Streaming 8- trees \9 N \9 N/ 8 Kenkstatubramanian, Westbrook 00)

xl

B-ree Range Queries are Slow

Renge Query : scan of elements in chosen range.
- leaf blocks seatiered throughout sk
- vandom block transfers are 1-2 orders of magnitude Slower

than Sequential block transfers.
._5_.

._5_./ | Ny
AT IS

Stveaming B-trees
- one vevsion keeps clynamic data Physically in ordev on disk

= vevy fast vange queries

Research

+ Build prototype sireaming B~ frees [8ender, Farsh-Colton s o¢)

- fost \wdewing : 12 orders of magnitude faster than B-rees
_ fast vonae queries: 1-2 ovdevs of megnitude faster then 8- frees
- dowel Searches: © 4-3 +imes Slower

- cathe - oblivious fechniques

- Study velated issues :
- different - length keys
- ‘rensadhions
~ parallel disks
- 0,5 support of cache- obliviousness

Cache - Oblivious Model -,!}M,.

Like DAM wodel, except
B % M unknoun 1o programmer(algorithm. cache TCTCLY

= Reasn about B,M, but prove vesults about unknown
multilevel memory ierarchy.

Arachive for disks with no * corvect » blacksize.

(ache - Oblivious Model -!}%'.

Like DAM wodel, except
B % M unknoun 1o programmer(algorithm. cache TCTCLY

= Reasn about B,M, but prove vesults about unknown
multilevel memory ierarchy.

Avactive for disks with no ¢ corvect » blocksize .

. Monual Turimg - The programmer writes block se info code (B-trees).
. Achve Adomahc Tuning - The program measures he cache pavameters.
(¢FTW [Frigo, Johnson %)

. Dassive Automahic Tuning - In 0 model, the program passiely employs
whaflever Cache exists. Surprisingly , ophimal date Shructures exst.

Historical Corfext

. Coche - obliviovs mode\ [Frigo, Leisevsen, Prokop, Ramechendran 91

. Cache -oblivigus B8-tree [Bender, Demaine, Farach-Cotton 00) CO index

Info array

. (ache - Obliviows B-tree simplifications

(Rahwan, Cole, Raman 1] (Broddl, Fagerbery, Jocsh o2) L
(8ender, Duan, Tacone, Wu 02) cache-oblivious B-tree

. Many ofnev data structures and algorithms (200)- 2006).

. Cache- oblivious B-vee beats fraditionsl B-1vee [gender, Forach-(oon, Kusznaul 6.
\dea: no “right™ value for B on disks.

This Research: use cache-oblivius Technology 40 build Sieammg 8- tree.

Tdea of Sheaning B-Twes Cseder, Farnchotom, kuszmmal oc3

Use part of the streaming Bvee node 45 buffer eloments asthey are inserfed.

TIsert: 0(logaN /€ B*E)

Search: 0 ao’aNIE)

A N e N

But no better at range queries than B-trees...

&ﬁ"@d Hemorg Array (PMA) [Bender, Demaine, Farach- Colton 0o

Meintain dynamic data physically in order on disk with 0(t) gaps
(eg., 307 extra Space).

Like leaving gaps on 2 bookshelt for ingertions

+ 0 (1+ log?n(8) amortized moves memory ransfers. [Berder, Demeine, farach-Colton 00]
+ 001 +\ogN[8) amorkized mwves memory tvansfers.for common case [Bendev, Hu 00]

Using PMA to improve Streaming B-tree

lVIAI#aI

l%OI/I/

A VA | VWA VA | WA VAA | VA VA \ WHA | V7

O(loggN) packed-memory arrays

Summary

Build Prototype Streaming B-trees

- Updates and Range Queries: 1-2 orders of magnitude speedup
- Searches: 1-3 times slower
- Cache-oblivious techniques

Other Directions

- Different-length keys, Transactions,
Parallel Disks, O/S support for CO programming

- Interaction with National Labs

- We appreciate interaction with national labs on
streaming problems (e.g., "data ingest problem").
Do national labs have relevant streaming applications?

- Past interaction, with Sandia National Labs, was on
locality in processor allocation.

- We won an R&D 100 Award in 2006 for the Compute
Process Allocator.

Summary

Build Prototype Streaming B-trees

- Updates and Range Queries: 1-2 orders of magnitude speedup
- Searches: 1-3 times slower
- Cache-oblivious techniques

Other Directions

- Different-length keys, Transactions,
Parallel Disks, O/S support for CO programming

- Interaction with National Labs

- We appreciate interaction with national labs on
streaming problems (e.g., "data ingest problem").
Do national labs have relevant streaming applications?

- Past interaction, with Sandia National Labs, was on
locality in processor allocation.

- We won an R&D 100 Award in 2006 for the Compute
Process Allocator.

Summary

Build Prototype Streaming B-trees

- Updates and Range Queries: 1-2 orders of magnitude speedup
- Searches: 1-3 times slower
- Cache-oblivious techniques

Other Directions

- Different-length keys, Transactions,
Parallel Disks, O/S support for CO programming

- Interaction with National Labs

- We appreciate interaction with national labs on
streaming problems (e.g., "data ingest problem").
Do national labs have relevant streaming applications?

- Past interaction, with Sandia National Labs, was on
locality in processor allocation.

- We won an R&D 100 Award in 2006 for the Compute
Process Allocator.

Static B-tree Performance

[Bender, Farach-Colton, Kuszmaul '06]

Data structure Average time per search

small-machine big-machine

CO B-tree 12.3ms 13.8ms

Btree: 4KB Blocks: 17.2ms 22.4ms
16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms
128K B blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

+ Static CO B-tree comparable with optimized

static traditional B-trees
- optimizes for right "effective block size"

Dynamic B-trees

[Bender, Farach-Colton, Kuszmaul '05]

Block insert insert range 1000
Size 440,000 450,000 query random
random random of all searches
values values data
CO B-tree 15.8s 4.6s 5.9s
CO B-tree 54.8s 9.3s 7.1s
Sequential block allocation: 2K 19.2s 24.8s 12.6s
4K 19.1s 23.1s 10.5s
SK 26.4s 22.3s 8.4s
16K 41.5s 22.2s 7.7s
32K 71.5s 21.4s 7.3s
64K 128.0s 11.58 6.5s
128K 234.8s 7.3s 6.2s
256K 444.5s 6.5s 5.3s
Random block allocation: 2K 3928.0s 460.3s 24.3s
Berkeley DB: 1201.1s
Berkeley DB (64 MB pool): 76.6s

*+ CO B-trees fantastic for range queries

* CO B-tree always near best parameter
choices in traditional B-trees for inserts,
range, queries, searches

Dynamic B-trees-Seq inserts

[Bender, Farach-Colton, Kuszmaul'05]

Time to insert a sorted sequence of 450,000 keys

Dynamic CO B-tree 61.2s
4KB Btree 17.1s
Berkeley DB (64MB) 37.4s

* CO B-tree worst for seq inserts, Berkeley
DB optimized for seq inserts

* Goal: PMA good but should be even better...

